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Abstract—Twitter is one of the most widely used social media
platforms today. It enables users to share and view short 140-
character messages called “tweets”. About 284 million active
users generate close to 500 million tweets per day. Such rapid
generation of user generated content in large magnitudes results
in the problem of information overload. Users who are interested
in information related to a particular domain have limited means
to filter out irrelevant tweets and tend to get lost in the huge
amount of data they encounter. A recent study by Singer et
al. found that software developers use Twitter to stay aware of
industry trends, to learn from others, and to network with other
developers. However, Singer et al. also reported that developers
often find Twitter streams to contain too much noise which is a
barrier to the adoption of Twitter. In this paper, to help developers
cope with noise, we propose a novel approach named NIRMAL,
which automatically identifies software relevant tweets from a
collection or stream of tweets. Our approach is based on language
modeling which learns a statistical model based on a training
corpus (i.e., set of documents). We make use of a subset of posts
from StackOverflow, a programming question and answer site, as
a training corpus to learn a language model. A corpus of tweets
was then used to test the effectiveness of the trained language
model. The tweets were sorted based on the rank the model
assigned to each of the individual tweets. The top 200 tweets
were then manually analyzed to verify whether they are software
related or not, and then an accuracy score was calculated. The
results show that decent accuracy scores can be achieved by
various variants of NIRMAL, which indicates that NIRMAL can
effectively identify software related tweets from a huge corpus of
tweets.

I. INTRODUCTION

Twitter, as one of the largest and popular on-line social
network sites, provides a platform to let people share news,
disseminate opinions, and connect with one another. It is
growing fast in the recent years and is reported to have more
than 600 million registered users. Along with the rapid increase
in the number of users, there is also a dramatic increase in the
number of microblogs (i.e., tweets) posted every day. Many
Twitter users who follow a large number of other users1 receive
thousands of tweets daily. This causes an information overload
problem which makes it hard for users to find relevant and
interesting tweets among the mass of tweets that they receive.

A large number of software developers also use Twitter
quite frequently, even for their professional activities, e.g., to
share and obtain latest technical news, to support project and
community management, etc. Unfortunately, as is the case
with other normal Twitter users, they find hard to extract

1In Twitter, a user will receive tweets generated by users that they follow.

useful information from tweets, especially those that can help
them in their professional activities. Singer et al. surveyed
271 and interviewed 27 active developers and found that
although developers are using Twitter for their professional
activities and development, they often find it a challenge to
deal with the many irrelevant tweets (i.e., noise) in their Twitter
streams [16]. Bougie et al. found that many of the tweets
that are generated even by software developers are related
to “daily chatter” [5]. Indeed, it is common for people to
spread personal yet inconsequential information in Twitter,
e.g., “Yay! Today is Friday”, “It’s cloudy today”, etc. To
make Twitter a better tool for software engineers, there is
a need for a technique that can help developers identify
software related tweets from the mass of other tweets. This
automated approach should be able to prioritize or rank tweets
for software developers’ professional use (e.g., getting latest
technical news) so that more relevant tweets (i.e., software
related tweets) can be ranked higher than irrelevant tweets
(e.g., daily chatter). Additional benefits of identifying software
related tweets are elaborated in Section II-A.

Prior studies on Twitter have proposed two basic ap-
proaches to identify software related tweets. One is a support
vector machine (SVM) based approach proposed by Prasetyo
et al. that requires a training set of tweets labeled as software
related and non software related [15]. Unfortunately, building
a representative set of tweets for training an SVM classifier
requires much manual effort and to the best of our knowledge
no such representative training data is available till date.
Another approach is a keyword based approach proposed by
Achananuparp et al. and Tian et al. that takes as input a list of
software related keywords and identifies a tweet as software
related if it contains at least one of the keywords [1], [20].
Both Achananuparp et al. [1] and Tian et al. [20] make use of
a list containing 100 software related words. However, this list
is not comprehensive and many software related tweets do not
contain any of the 100 words. Furthermore, software related
contents on Twitter might change over time. Unfortunately, it is
hard for both the SVM and keyword based approaches, which
rely on a static set of training data or a list of keywords, to keep
with this change without much effort (e.g., continuous labeling
effort). Additional limitations of the existing approaches are
elaborated in Section II-B.

To deal with the limitations of existing approaches, in this
work we propose NIRMAL, which is a language model based
approach to identify software related tweets. A language model
can be regarded as a statistical tool to capture regulations in
a text corpus. It is widely used in natural language processing
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(NLP) area to help machine translation, speech recognition,
etc. [10], [12], [13], [30]. Recently, it was also adopted by
researchers in software engineering to capture the naturalness
of source code and support code suggestion and completion
tasks [2], [6], [14], [23]. With a language model, we can
take a corpus (i.e., a set of documents), model its regularities
and use the resultant model to predict if another document is
related to the documents in the corpus. To build a language
model, our approach namely NIRMAL takes a large number
of contents from StackOverflow, the largest site for developers
to post questions and get answers. By doing this, we can
capture the regularities among documents that are software
related. Given a new tweet, we calculate the probability of
the tweet to be software related, using the model learned from
StackOverflow content. The probability calculated corresponds
to the computation of the similarity between the given tweet
and the software related contents on StackOverflow. If a tweet
receives a higher probability using the model, it means that
it has a higher chance of being a software related tweet.
To improve the performance further, we have also extended
a standard language model by considering the repetitiveness
of contents in a tweet that can often differentiate between
informative tweets and meaningless tweets.

Note that compared to the previous two approaches (i.e.,
SVM based [15] and keyword based [1], [20]), our approach is
more useful as it does not require a representative set of man-
ually labeled tweets which takes much manual effort to create,
and it does not suffer the same limitations as the keyword based
approach. To capture new trends and developments in software
development, the language model can also be incrementally
updated with new contents from StackOverflow easily ,which
requires no/little manual effort (i.e., no manual labeling effort
is needed).

To evaluate the effectiveness of our approach, we have
trained NIRMAL on a large set of contents from the
StackOverflow data dump. We then used NIRMAL to rank
6,294,015 tweets posted by 90,883 micro bloggers that we had
collected in April 2013. We manually evaluated the top-ranked
tweets and determined whether they are software related or
not. The results were evaluated using a measure accuracy@K,
which is defined as the proportion of tweets in the top-K
positions that are software related. The metric accuracy@K has
also been used to evaluate past studies such as [8], [27], [29].
We found that NIRMAL can achieve an accuracy@10, accu-
racy@50, accuracy@100, accuracy@150, and accuracy@200
of 0.900, 0.820, 0.720, 0.707 and 0.695, respectively. On
the other hand, a random model can only achieve an accu-
racy@10, accuracy@50, accuracy@100, accuracy@150, and
accuracy@200 of 0.400, 0.280, 0.280, 0.220 and 0.240, re-
spectively. Thus, NIRMAL can improve the random model by
125%, 192.86%, 157.14%, 221.21% and 189.58%, in terms of
accuracy@10, accuracy@50, accuracy@100, accuracy@150,
and accuracy@200 respectively. We have also integrated our
approach with the keyword based approach by Achananuparp
et al. and Tian et al. and found that we can improve the
accuracy@10, accuracy@50, accuracy@100, accuracy@150,
and accuracy@200 of the keyword based approach by 11.11%,
31.43%, 28.38%, 28.32% and 29.14%, respectively.

The contributions of this paper are as follows:

1) We propose a new approach, named NIRMAL, that
can automatically identify software related tweets.
Our approach makes use of a language model to
capture the regularities of software related documents
by leveraging the mass of data available in Stack-
Overflow. Our approach also measures the repetitive-
ness of contents to differentiate between meaningful
tweets and meaningless ones. Different from the
existing approaches, NIRMAL does not require a
representative training set of labeled tweets or a long
list of representative keywords.

2) We have used NIRMAL to rank 6,290,415 tweets
from 90,883 microbloggers that were collected in
April 2013. The experiment results show that NIR-
MAL can achieve a high accuracy@K scores (i.e.,
up to 0.900) and also improve the keyword based
approach by up to 31%. We have also investigated
the impact of different settings to determine the
effectiveness of NIRMAL.

The structure of the remainder of this paper is as follows.
In Section II, we elaborate the motivation of our work further.
In Section III, we present the background information about
Twitter and language model. In Section IV, we describe
our proposed language-based approach that can automatically
identify software related tweets. In Section V, we present our
experiment settings and the results of our experiment. Threats
to validity have been discussed in Section VI. Related work
is presented in Section VII. We finally conclude and mention
future work in Section VIII.

II. MOTIVATION

In this section, we first describe the benefits of identifying
software related microblogs in more detail. We then elaborate
limitations of the two basic approaches that have been used to
extract software related tweets and how these limitations are
addressed by NIRMAL.

A. Why identify software related tweets?

As microblogging services have become very popular in
recent years, more and more developers are using microblogs
to share news and connect with one another. Software engi-
neering researchers also noticed this trend among developers,
and have started to analyze how do microbloggging sites,
e.g., Twitter, help developers in their professional activities.
Several studies have analyzed the contents of microblogs
that developers post on Twitter [5], investigated behaviors of
software microbloggers on Twitter [20], [26], and surveyed
developers on how they use Twitter [16].

Researchers who conducted the above studies found that
developers indeed use Twitter a lot to support their professional
activities by sharing and discovering various information from
microblogs, e.g., new features of a library, new methodologies
to develop a software system, opinions about a new technology
or tools, etc. They also find that developers use Twitter to
post contents to support project management and coordinate
activities inside a community. However, software microblog-
gers also post a lot of microblogs that are not relevant to
software development, e.g., microblogs about non-technical
news, personal events, jokes, etc. Since software microbloggers
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are creating some amount of software related knowledge
together with a larger amount of non software related contents,
it becomes a challenge to discover interesting software related
information from microblogs that a developer receives. In
fact, this is reported as one of the major challenges faced
by software microbloggers who are using Twitter and is one
of the barriers to the adoption of Twitter [16]. Therefore, an
automated approach that can identify interesting microblogs,
e.g., software related tweets, is needed.

Besides the above-mentioned practical need, automatic
identification of software related tweets, can also open up a
new avenue of research: it can be used to extract a new type
of software repository that can be mined to support various
software development and evolution tasks. Some potential
tools that can be built from the identified software related
tweets include:

1) Tools that discover and visualize trends of software
related contents on Twitter.

2) Tools that recommend contents on Twitter that are
specific to a developer’s specific needs and interests.

3) Tools that mine opinions about APIs, IDEs, pro-
gramming languages, technical solutions, etc., from
contents on Twitter.

B. Why a new language model based approach?

In the literature, researchers have proposed two basic ap-
proaches to identify software related microblogs, i.e., Support
Vector Machine (SVM) based approach and keyword based
approach. We elaborate the details of these two existing
approaches as well as their limitations below:

SVM based approach. Prasetyo et al. proposed to use SVM to
predict if a tweet is software related or not [15]. They manually
labeled 300 tweets as either software related or not and used a
part of the labeled tweets as a training data to learn a classifier
using SVM, and applied the classifier on another set of tweets
to predict whether they are software related or not. However,
their approach only considered 300 tweets from the millions
of tweets. To generalize the SVM based approach, researchers
need to label a large and representative sample of tweets on
Twitter, which takes a lot of time. The 300 tweets are selected
by checking the presence of nine software related hashtags,
and therefore they have a nearly balanced data set: 47% of
the tweets are software related while the other 53% are non
software related. In reality, the majority of tweets do not have
hashtags and there are much more non software related tweets
than software related tweets. The extremely unbalanced data
is likely to impact the effectiveness of the SVM classifier. In
addition, contents on Twitter are evolving as new technologies
and tools are introduced to the market; this means that the
model might need to be updated based on new labeled tweets.
Unfortunately, this would require a continuous effort to label
new tweets as either software related or not which would be
costly.

Keyword based approach. Achananuparp et al. and Tian
et al. used a list of keywords to identify software related
tweets [1], [20]. Different from the SVM based approach,
the keyword based approach does not require labeled tweets.
It simply takes a set of software related words as input and
identifies a given tweet as software related if it contains any

of the words in the provided set of words. Unfortunately,
there are a number of limitations with this approach. First,
it is hard to construct a comprehensive list of software re-
lated words that could identify whether a tweet is software
related or not. For instance, tweet How To: Use the Entity
Framework Designer http:// t.co/SteQkWAKfN is talking about
a new resource that a developer wants to share with other
developers, however it does not contain any of the keywords
considered by Achananuparp et al. and Tian et al. Second,
some words can have multiple meanings and not all of the
meanings will be software related, e.g., Java, eclipse, etc. The
problem is aggravated with the fact that tweets can be written
in multiple languages. In English, a word might correspond
solely to a software related concept; however, it can correspond
to a completely unrelated concept in another language (e.g.,
Ada is a programming language and the same word means
“there is (are)” in Indonesian). Third, similar to the SVM based
approach, the keyword based approach cannot automatically
update itself when new technologies or tools are introduced.
Someone needs to manually update the list of keywords to
make the approach adapts to new technological updates.

To address the challenges faced by the existing two ap-
proaches, we propose a new approach namely NIRMAL to
identify software related tweets leveraging language model
learned from StackOverflow. The benefits of NIRMAL in-
clude: 1) it does not require labeled software related and non
software related tweets, 2) it does not require manually defined
keyword list, 3) it takes the context of a word into considera-
tion. We describe our approach in detail in Section IV.

III. BACKGROUND

In this section, we first describe the two platforms that we
consider in this study, namely Twitter and StackOverflow. We
then provide a brief introduction of language model.

A. Twitter

Twitter is the most popular and largest microblogging site
worldwide. It already has more than 600 million registered
users generating over 500 million tweets daily 2. The number
of active Twitter users is growing rapidly, it increased from
around 167 millions in the 3rd quarter of 2012 to 284 millions
in the 3rd quarter of 2014. 3

Twitter allows a user to post text messages, referred to as
“tweets”, with a maximum length of 140 characters. To address
the limitation on the length of tweets, many Twitter users
include url links in their tweets pointing to webpages such
as blogs, news, etc. that contains more information. Twitter
users can also include hashtags, which typically start with
a “#” symbol. If a user clicks on a hashtag, Twitter will
show other tweets with the same hashtag. In Twitter, one can
follow another user; a user (follower) who follows another user
(followee) will subscribe to all tweets that are posted by the
followee. Besides composing new tweets, Twitter allows users
to perform other activities. This includes retweeting an existing
tweet that are posted by other users. A user that retweets
a tweet will broadcast the tweet to all of his/her followers.

2https://about.twitter.com/company
3http://www.statista.com/statistics/282087/number-of-monthly-active-

twitter-users/
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Retweets typically start with the keyword “RT”. Users can
also reply to an existing tweets or tweeting directly to a user.
A reply or direct tweet contains “@Username” to identify the
user the tweet is intended for. Twitter also supports users to
favorite a tweet to show their interest in the content of a tweet.

Figure 1 shows a sample tweet posted by “C# Corner”.
The sample tweet contains two hashtags, i.e., csharp and
csharpcorner. This tweet specifies another Twitter user using
the “@” symbol. It also contains a url link that points to a blog
that talks about how a number can be converted to a string in
C#.

Fig. 1: A sample microblog (i.e., tweet) on Twitter.

B. StackOverflow

StackOverflow, created in 2008, is the most popular ques-
tion answering sites specially designed for developers. Stack-
Overflow provides a platform for developers to help one
another by asking and answering software related questions. It
has become a large knowledge source with more than 2 million
registered users contributing over 7 millions questions.4 The
large amount of software related question-and-answer threads
in StackOverflow is a good source of information to mine and
study. Past research works have used StackOverflow data to:
discover development topics and trends [3], build software-
specific word similarity database [21], automatically generate
code comments [28], etc.

Figure 2 shows a sample question-and-answer thread ex-
tracted from StackOverflow. Each question-and-answer thread
in StackOverflow contains three types of information: title,
body, and comments. The title of a thread is a short summary
of the question. The body of a thread contains the description
of the question and one or more answers if the question has
been answered. The comments of a thread could be comments
to the question or comments to any of the answers. These three
different types of contents have different properties: title and
comments contain more natural language text, while body is
usually a mixture of text and pieces of code. Furthermore,
comparing title and comments, title usually contains more
technical words while comments might contains some non
technical sentences or phrases, such as “thank you”, etc.

C. Language Model

A statistical language model is a probability distribution
over word sequences. It assigns a probability to any sequence
of words to present the likelihood of the sequence occurring in
the language it models. For example, a good language model
learned from English corpus will assign higher probability
scores to sentences in English than sentences in other lan-
guages.

More formally, given a word sequence S = t1t2t3 . . . tn, a
language model estimates the probability of this sequence to
be represented by the model as:

4http://en.wikipedia.org/wiki/Stack Overflow#cite note-soUSERS-17

Fig. 2: A sample question-and-answer thread on StackOverflow.

P (S) = P (t1)

n∏
i=2

P (ti|t1, . . . , ti−1) (1)

In the Equation 1, the probability for a sequence S is
defined as a product of a series of conditional probabilities.
Conditional probability P (ti|t1, . . . , ti−1) represents the like-
lihood that word ti follows the words that appear before it
(i.e., t1, . . . , ti−1).

In practice, it is not practical to store all P (ti|t1, . . . , ti−1)
since there is a huge number of possible prefixes. Therefore,
researchers have proposed methods to simplify this probability
by including some assumptions. N-gram language model is
one of such simplifications, which has been proven to be
effective in practice. The N-gram language model assumes
that the probability of a word ti to appear after a series of
words t1, . . . , ti−1 could be estimated by considering only the
previous N − 1 words rather than all previous words. More
formally, the following equality is assumed.

P (ti|t1, . . . , ti−1) = P (ti|ti−N+1, . . . , ti−1) (2)

The probability on the right hand side of Equation 2 can
be estimated from a training corpus (i.e., a set of textual
documents) by computing the ratio of the number of times
word ti follows the prefix sequence ti−N+1, . . . , ti−1 and the
number of times the prefix sequence ti−N+1, . . . , ti−1 appears
in the training corpus. More formally, we can compute the
probability as follows:

P (ti|ti−N+1, . . . , ti−1) =
count(ti−N+1, . . . , ti−1, ti)

count(ti−N+1, . . . , ti−1)
(3)

In the above equation, count(S ) corresponds to the number
of times sequence S appears in the training corpus.

Consider the sample tweet shown in Figure 1 which is a
sequence of words. If we use a bigram language model (N=2),
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the probability of “convert numeric number to string in C#”
could be calculated as

P (convert, numeric, number, to, string, in, C#) =

P (convert|〈s〉)P (numeric|convert)P (number|numeric)

P (to|number)P (string|to)P (in|string)
P (C#|in)P (〈/s〉|C#)

In the above equation, 〈s〉 denotes the start-of-sentence
marker and 〈/s〉 denotes the end-of-sentence marker.

Since the probability of each word in a sentence is often
small, and the multiplication of many small numbers can cause
underflow problem, rather than computing the probability of a
sentence, the logarithm of this probability is often computed.
The negation of this logarithm normalized by the number of
words is often referred to as the perplexity of the sentence. In
this paper, we denote the perplexity of a sentence S as PP (S).
It is defined more formally below:

PP (S) =
−1
n

log(P (t1t2t3 . . . tn)) (4)

Note that a low perplexity score corresponds to a high
probability score. Thus, the lower the perplexity score of a
sentence is, the more closely the language model captures the
sentence.

One problem of applying N-gram model in real tasks is that
it assigns a zero probability to a sentence if an N-gram in the
sentence does not appear in the training corpus. To deal with
this problem, many smoothing techniques have been proposed
in the literature. A smoothing technique assigns a small but
non-zero probability to an N-gram that does not appear in the
training corpus. One of the well known smoothing technique is
the Katz backoff model [9]. It replaces the probability a word
w considering the prior N − 1 words, with the probability of
w considering the prior M − 1 words (where M < N ), if the
earlier probability is zero. In effect, it reduces a N-gram model
to a M-gram model, where M is less than N, if an N-gram does
not exist in the training corpus.

IV. APPROACH

Figure 3 shows the overall framework of NIRMAL. The
approach includes three major phases: the model creation
phase, tweet ranking phase, and evaluation phase. In the
model creation phase, NIRMAL learns a language model from
StackOverflow data. In the tweet ranking phase, NIRMAL first
uses the learned model to compute the perplexity score of
each tweet. The lower the perplexity score, the more likely
the tweet is software related. NIRMAL then ranks the tweets
in ascending order of their perplexity scores and returns this
ranked list. The three phases are described in more detail in
the following subsections.

A. StackOverflow Data Acquisition & Preprocessing

We used the StackOverflow data dump that is provided
in the following website: archive.org/download/stackexchange.
In the website, there are many files corresponding to contents

from various StackExchange websites (including StackOver-
flow). We use the following two files: Posts.7z5 and Com-
ments.7z6. Posts.7z contains the title and body (i.e., question
and answers) of posts that appear in StackOverflow. Com-
ments.7z contains comments that people give to the questions
and answers in StackOverflow. These files contain contents
posted in StackOverflow from July/September 2008 to Septem-
ber 2014. There are a total of 7,990,787 titles, 21,736,594
bodies (i.e., questions + answers), and 32,506,636 comments.

Since there are too many bodies (i.e., questions + answers)
and comments, to reduce the time it takes to learn a language
model, we only used 8,000,000 of them. We randomly selected
8,000,000 bodies and comments from the data dump. We
also performed simple text pre-processing. We removed all
punctuation marks and URLs from the sentences in the titles,
bodies, and comments. We also changed all words to their
lower case.

B. Language Model Building

We used SRILM [17], a popular language modelling
toolkit, to create an N-gram language model. SRILM takes
as input a set of documents, a parameter N, and outputs an
N-gram language model that characterizes the regularities of
text in the input set of documents. SRILM performs smoothing
following the Katz backoff model [9]. Thus, it reduces a N-
gram model to a M-gram model, where M is less than N, if
an N-gram does not exist in the training corpus.

C. Twitter Data Acquisition & Preprocessing

To collect tweets, we first obtained a set of microbloggers
that are more likely to generate software related contents.
We started with a collection of 100 seed microbloggers who
are well known-software developers7. Among these seed mi-
crobloggers we have codinghorror which is the Twitter
alias of Jeff Atwood, the founder of StackOverflow. Next, we
analyzed the follow links of these microbloggers on March
1, 2013, to identify other microbloggers that follow or are
followed by at least 5 seed microbloggers. We added these
other microbloggers to the set of seed microbloggers to get
a set of 90,883 microbloggers. After, we had identified the
target microbloggers, we downloaded tweets that are generated
by these microbloggers from April 1 to April 31, 2013. We
downloaded these tweets using the Twitter REST API. We have
a Twitter whitelist account that allows us to make 20,000 API
calls every hour. In total, we collected 6,294,015 tweets.

We performed simple pre-processing on the collected
tweets. We removed punctuation marks and URLs, and also
changed all words into their lowercase.

D. Ranking of Tweets

To rank tweets, we made use of two sources of information:
first, we used the perplexity score that is output by the language
model; second, we computed a scaling factor based on the
repetitiveness of words in a tweet. We found that many tweets

5https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
6https://archive.org/download/stackexchange/stackoverflow.com-

Comments.7z
7http://www.noop.nl/2009/02/twitter-top-100-for-softwaredevelopers.html
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Fig. 3: Framework of the proposed approach - NIRMAL

with repetitive contents, e.g., “1 1 1 1 1 1 1”, “a a a a a a”,
are rather meaningless. Most meaningful tweets do not have a
high number of repetition. We computed the scaling factor of
a sentence S using the following equation:

St(S) =
wct(S)

wcu(S)
(5)

In the above equation, wct(S) is the number of words in
the sentence S and wcu(S) is the number of unique words in
the sentence S. Note that the lower the scaling factor the less
repetitive a tweet is and the more likely it is meaningful.

Given a sentence S after we have computed its perplexity
score (i.e., PP (S)) and its scaling factor (i.e., St(S)), we can
compute its revised perplexity score, denoted by PPR(S), as
follows:

PPR(S) = PP (S)× St(S) (6)

The lower the ranking score of a tweet the higher is the
likelihood of it to be software related and not meaningless.
Note that due to smoothing using Katz backoff model, although
both “1 1 1 1 1 1 1”, “a a a a a a” do not appear in
the StackOverflow data, SRILM will assign a relatively low
perplexity score to both sentences since “1” and “a” appears
often in the StackOverflow data. Thus, we need to leverage
the repetitiveness of contents in a tweet to increase the score
of these meaningless tweets.

V. EXPERIMENTS & RESULTS

In this section, we describe our dataset and experimental
settings, followed by our evaluation metric. We then present
our four research questions and the results of our experiments.

A. Dataset and Settings

The detailed statistics of the Twitter and StackOverflow
datasets that we use in this experiment are shown in Table I.
The number of words in the tweets that we collected amounts
to more than 77 million. The number of words in the titles,
bodies (i.e., questions + answers), and comments that we
collected amounts to, slightly more than 39 thousand, 725
million and 200 million, respectively.

TABLE I: Statistics of Twitter Data and StackOverflow Data.
Corpus #Documents #Words
Twitter 6,294,015 77,491,505

StackOverflow
(Title) 7,990,787 39,786

StackOverflow
(Body) 8,000,000 725,449,601

StackOverflow
(Comment) 8,000,000 200,584,369

NIRMAL accepts two inputs: the dataset used to learn a
language model and the parameter N of N-gram. By default,
unless otherwise stated, we use the StackOverflow (Title)
corpus (i.e., the titles of the StackOverflow posts) to learn
a language model, and set the value of N to 4. We run
the experiment using the following machines: Preprocessing
and tweet ranking steps are run on Intel Core i5-4570 3.2
GHz CPU, 8 GB RAM desktop running Windows 7 64 bit.
All SRILM related steps are performed on a 7 core Intel(R)
Xeon(R) CPU E5-2667 0 @ 2.90GHz, 64 GB RAM server
running CentOS release 6.5.

B. Evaluation Metrics

We use NIRMAL to sort the 6.2 million tweets and
we manually inspect the top-K tweets that are returned by
NIRMAL. We evaluate the effectiveness of our approach using
accuracy@K. accuracy@K is defined as the proportion of
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tweets in the top-K positions that are software related. accu-
racy@K has also been used to evaluate other past studies [8],
[27], [29].

C. Research Questions

Our experiments aim to answer following four research
questions that assess the strengths and limitations of NIRMAL
and several baseline approaches.

RQ1: How effective is our approach in identifying software
related tweets?

In this question, we want to evaluate how effective is
NIRMAL in ranking tweets such that the software related
ones are ranked higher than the non software related ones. To
answer this research question we simply run NIRMAL with the
default setting on the 6.2 million tweets and manually evaluate
the top-K tweets that are returned by NIRMAL. We report
the accuracy@K scores that are achieved by NIRMAL. We
compare the performance of NIRMAL with the performance
of a random model that randomly labels K tweets as software
related.

RQ2: What are the effects of varying NIRMAL inputs on
its effectiveness?

NIRMAL accepts two kinds of inputs: the value N for the
N-gram model, and the dataset used to train the N-gram model.
In this research question, we want to investigate the impact
of using different values of N and different datasets on the
overall effectiveness (i.e., accuracy@K scores) of NIRMAL.
We investigate four different N values, i.e., 1,2,3, and 4, and
five different datasets: StackOverflow (Title), StackOverflow
(Body), StackOverflow (Comment), StackOverflow (Title)

⋃
StackOverflow (Body), StackOverflow (Title)

⋃
StackOver-

flow (Body)
⋃

StackOverflow (Comment).

RQ3: How efficient is our approach?

Many new tweets are continuously generated every second.
For our approach to work in practice, it needs to be able to
process new tweets efficiently. In this research question, we
investigated the time it takes for NIRMAL to learn a language
model and the time it takes to compute the revised perplexity
score of a tweet. Since a trained language model can be used
to label many tweets before it needs to be retrained, the time
NIRMAL takes to learn a language model can be long (e.g., a
few hours) but cannot be excessively long (e.g., a few months).
On the other hand, the time NIRMAL takes to compute the
revised perplexity score of a tweet needs to be very short (i.e.,
less than a second).

RQ4: Could our approach improve the effectiveness of the
keyword based approach?

Achananuparp et al. and Tian et al. have used a set of key-
words to detect if a tweet is software related or not. However,
many tweets that contain one or more of the keywords are
not software related. In this research question, we investigated
whether we can use NIRMAL to effectively sort tweets that
have been filtered such that the software related ones appear
in the top of the list. To answer this research question, we first
filtered the 6.2 million tweets using the 100 keywords that
Achananuparp et al. and Tian et al. used. In total, among the
6.2 million tweets, we have 227,225 tweets that contain at least

one of the keywords.We then selected a random sample of 200
tweets and calculated the accuracy@K scores for keyword only
approach. We then applied NIRMAL to sort all the 227,225
keyword containing tweets and manually evaluated the top-K
tweets to compute the accuracy@K score to check if NIRMAL
is able to improve the accuracy of keyword based approach.

D. Research Results

In this section, we present our experiment results that
answer each of the research questions raised in the previous
section.

1) RQ1: Effectiveness of Our Approach: The results of our
experiment are shown in Table II. From the results we can
note that the accuracy@K of NIRMAL ranges from 0.695 to
0.900 using the default setting. When we investigated the top-
10 tweets, we found that 90% of them are software related.
When we investigated the top-200 tweets, we found that 69.5%
of them are software related when NIRMAL is used.On the
other hand for a random model only 24% of the top-200 tweets
were software related. This shows that NIRMAL is accurate,
and also that the tweets ranked higher in the list are more
likely to be software related than those ranked lower in the
list.

TABLE II: acc@K (i.e., accuracy@K) of NIRMAL for Various K
Approach acc@10 acc@50 acc@100 acc@150 acc@200
NIRMAL 0.900 0.820 0.720 0.707 0.695

Random 0.400 0.280 0.280 0.220 0.240

2) RQ2: Effectiveness of Various Param-
eter Settings and Learning Resources:
Varying the parameter N of the N-gram model. The results
of our experiment are shown in Table III. From the results
we note that if we increase N for N-gram language model
the accuracy@K increases for all values of K, e.g., The
accuracy@200 increases from 0.120 to 0.695 as we move
from 1-gram to 4-gram model.

TABLE III: Effect of Varying N on the Performance of NIRMAL
N acc@10 acc@50 acc@100 acc@150 acc@200
1 0.000 0.140 0.140 0.127 0.120
2 0.500 0.460 0.460 0.473 0.485
3 0.600 0.640 0.680 0.660 0.630
4 0.900 0.820 0.720 0.707 0.695

Varying the training corpus. The results of our experiment are
shown in Table IV. From the results we note that for any N-
gram language model the highest values of accuracy@K were
achieved when the training corpus containing only Titles was
used. This can be explained as the Titles will generally contain
less noise, i.e., natural language text not related to software.
However the Body and Comments contain a lot of normal
language text, as well as code samples and fragments, which
should explain the relatively lower accuracy scores attained by
language models created using their corpus.

3) RQ3: Efficiency of Our Approach: The results of our
experiment is shown in Table V. We show the time NIRMAL
takes to create a language model from the StackOverflow
title data (i.e., Model Creation Time), and the average time
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TABLE IV: Effect of Using Different Training Corpus on the Perfor-
mance of NIRMAL. T = Title, B = Body, C = Comment, TB = Title
+ Body, TBC = Title + Body + Comment.

Corpus acc@10 acc@50 acc@100 acc@150 acc@200
T 0.900 0.820 0.720 0.707 0.695
B 0.300 0.560 0.530 0.500 0.475
C 0.500 0.380 0.280 0.227 0.200

TB 0.400 0.640 0.560 0.540 0.500
TBC 0.400 0.600 0.540 0.447 0.435

NIRMAL takes to compute the revised perplexity score of a
tweet (i.e., Model Compu. Time), for various values of the N
parameter. All the times are shown in seconds. We can observe
that as N increases the time to create a model also increases.
This is pretty evident because the model will need to consider
a higher number of N-grams (word pairs) when N increases.
However change in N seems to have a negligible effect on the
time required to calculate revised perplexity score for a new
tweet. Please note that perplexity score calculation time has
been averaged over score calculation time for all 6,294,015
tweets.

TABLE V: Efficiency of NIRMAL
N Model Creation Time (in Sec.) Score Compu. Time (in Sec.)

1-gram 14 0.000268827
2-gram 46 0.000261518
3-gram 101 0.000261359
4-gram 175 0.000278042

4) RQ4: Integration with Keyword Based Method: The
experiment results are shown in Table VI. We can clearly
observe that applying the NIRMAL to the keyword approach
improves the accuracy@K for all values of K. Our results show
that NIRMAL can be used to improve the accuracy score up
to 31%. The lowest observed increase of about 11.11% for
accuracy@10 value. But this should be seen as a positive result
as it was the maximum increase possible at K=10. The new
value achieved i.e., 1 (obtained after applying NIRMAL) is the
highest value possible value for the parameter accuracy@K.
Thus, we can deduce that applying NIRMAL to a keyword
approach seems to result in an improved performance.

TABLE VI: Keyword VS. NIRMAL + Keyword
Approach acc@10 acc@50 acc@100 acc@150 acc@200

Key. 0.900 0.700 0.740 0.753 0.755
NIRMAL + Key. 1.000 0.920 0.950 0.967 0.975

VI. THREATS TO VALIDITY

In this section, we discuss threats to three types of validity,
i.e., internal, external, and construct validity.

Threats to internal validity. Threats to internal validity relate
to errors in our experiments and our labelling. Most of our
experimental process is based on SRILM, a commonly used
language model learning and application tool. We believe the
code of SRILM is stable and reliable. To label the tweets as
software related or not, we asked one PhD student with more
than 5 years of experience in software industry and more than
10 years of experience in programming to manually label the
tweets. We believe the PhD student has enough expertise to

decide if a tweet is software related or not. When labeling
the tweets, the PhD student not only reads the tweets but
also opens the URLs contained in the tweets (if needed).
The labeling process might be subjective, however, since one
person labels all tweets the judging criteria used remains
consistent.

Threats to external validity. Threats to external validity
relates to the generalizability of our approach and evaluation.
In this work, to reduce threats brought by using a small training
corpus, we have downloaded and used millions of titles, ques-
tions, answers, and comments from the official StackOverflow
dump which contains contents posted in StackOverflow from
2008 to 2014. We have used NIRMAL to rank more than 6.2
million tweets that are generated by more than 90 thousand
microbloggers over a two month period. We have manually
labeled the top-200 tweets generated by NIRMAL. In the
future, to reduce the threats to external validity, we plan to
use NIRMAL to rank a larger number of tweets generated by
more microbloggers. We also plan to manually label a larger
number of tweets.

Threats to construct validity. Threats to construct validity
relates to the suitability of our evaluation metric. In this
work, we use accuracy@K to measure the effectiveness of our
approach. This metric is intuitive and it has been used in many
previous studies, e.g., [8], [27], [29]. Thus, we believe there
is little threat to construct validity.

VII. RELATED WORK

In this section, we first present existing software engineer-
ing studies that analyze Twitter data. We then present studies
that implement or customize language models for analyzing
various software engineering data. Finally, we describe some
software engineering studies that employ other text analysis
techniques to analyze various software artifacts.

A. Twitter and Software Engineering

Singer et al. surveyed 271 and interviewed 27 active
developers on Github [16]. They found that many developers
are using Twitter to “keep up with the fast-paced development
landscape”. Specifically, developers use Twitter to get aware-
ness of people and trends, extend their technical knowledge,
and build connections with other developers. They also found
that information overload, i.e., few useful information hidden
in thousands of useless tweets, is one of the biggest challenges
faced by developers in using Twitter. Their finding shows the
need to help developers pull out software related tweets from
the massive amount of non software related tweets, which
motivates our study.

A number of researchers have analyzed microblogs posted
in Twitter (aka tweets) or built tools to support developers
to better use Twitter for their day-to-day work. Bougie et
al. analyzed 11,679 tweets posted by 68 developers from
three open source projects [5]. They observed that software
engineers leverage Twitter to communicate and share in-
formation. They also conducted a qualitative study on 600
tweets and group them into four categories: software related,
gadgets and technological topics, non-technical topics, and
daily chatter. Wang et al. analyzed 568 tweets posted by
developers from the Drupal open source project [26]. They
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found that Drupal developers use Twitter to coordinate efforts,
share knowledge, encourage potential contributors to join, etc.
Tian et al. analyzed behaviours of software microbloggers on a
large dataset that contains more than 13 million tweets posted
by 42 thousand microbloggers [20]. They used 100 software
related words to identify software related tweets and found
that software related tweets often contain more URLs and
hashtags, but less mentions than non-software related tweets.
They also find that some of the microbloggers are very active
on Twitter and have contributed many software related tweets.
In another work, Tian et al. manually categorized 300 tweets
that contain software related hashtags, e.g., “java”, “csharp”
into ten groups [19]. These ten groups include commercial,
news, tools and code, question and answer, events, personal,
opinion, tips, job, and miscellaneous. Achananuparp et al. build
a tool that can visualize trends from a large number of software
related tweets [1]. To collect software related tweets, they first
selected a set of famous software engineers on Twitter as seed
users, and then they expanded this set to include other potential
software microbloggers by including those that follow or are
followed by many of the seed users. They then collected tweets
from this set of microbloggers and identified software related
tweets by checking the presence of 100 software related words.

Our work is closest to the work of Prasetyo et al. [15]. They
manually analyzed a sample of 300 tweets and labeled each
of them as a software related tweet or non-software related
tweet. They then used Support Vector Machine (SVM) to train
a model from a set of labeled tweets and applied the model
on another set of tweets to predict if each of them is software
related or not. For their approach to work well on a large
set of tweets, there is a need to manually label a large set
of tweets. This would require much manual work. Due to the
unavailability of a large set of labeled tweets, their approach
has only been tested on a small set of tweets (i.e., 300 tweets).
Different from Prasetyo et al.’s approach, our approach does
not require any labeled tweet. We learn a model based on the
publicly available StackOverflow data and use it to compute a
likelihood score of a tweet being software related or not.

B. Language Models and Software Engineering

In recent years, many researchers have applied and cus-
tomized techniques from Natural Language Processing (NLP)
domain to analyze software data [2], [4], [6], [11], [14], [18],
[23]. Among the NLP techniques, language models are getting
more popular in software engineering research, and have
shown their power in supporting code recommendation [2],
[6], [14], [23]. We highlight a number of studies that make
use of language models for code recommendation below.

Hindle et al. investigated whether a piece of code can be
modelled by a language model, and how the language model
can be used to support software engineering tasks [6]. They
find that code is even more repetitive in nature than natural
language, and therefore it can also be modelled by a language
model. They further build a code completion tool for Java and
show that it can improve Eclipse’s code completion capabil-
ity. Nguyen et al. propose a semantic language model that
combines an N-gram model with a topic model to represent
code [14]. They show that the resultant semantic language
model named SLAMC can improve a standard N-gram model
in representing code and it can be used to build an improved

code completion tool which achieves a higher accuracy as
compared to the tool built by Hindle et al. Tu et al. extended
an N-gram model by incorporating a special characteristic of
code namely its localness [23]. Due to module specialization,
code in a particular module typically has different N-gram
distributions as compared to code in other modules. A standard
N-gram model only captures global regularities but not local
regularities exhibited in a particular module. To take the
localness of code into consideration, Tu et al. use a cache to
store N-gram code patterns in each locality. Their experiment
shows that their approach can be used to build a better code
completion tool that can achieve a better accuracy than Hindle
et al.’s approach and Nguyen et al.’s approach. Allamanis and
Sutton build a language model from 352 million lines of Java
code [2]. They show that by using this large code base, a
better language model can be learned. They applied the learned
language model to build a code completion tool and show that
it is better than the tool proposed by Hindle et al. which is only
trained on a smaller code base. In the same paper, Allamanis
and Sutton also propose a new code complexity metric that
can distinguish reusable classes from other classes. Different
from the above studies, we use language model for a different
purpose, namely to predict the likelihood of a tweet to be
software related or not.

C. Text Analysis and Software Engineering

Besides language models, many other text analysis tech-
niques, e.g., information retrieval, topic modeling, etc., have
been used by researchers to analyze software and its related
textual artifacts [3], [7], [22], [24], [25]. We highlight a few
software engineering studies that make use of text analysis
below.

Wang et al. conducted a comparative study on the effec-
tiveness of 10 different information retrieval (IR) techniques
in locating code units that implement a feature [25]. They
tested the performance of the IR techniques on a large Linux
code corpus, that contains 1,561 features and their linked
85,466 functions. Their experiments show that simple IR
techniques, i.e., vector space model (VSM) and smoothed
unigram model (SUM) perform better than more complicate IR
techniques, e.g., probabilistic latent semantic indexing (pLSA),
non-negative matrix factorization (NMP), etc. Tian et al. ap-
plied IR techniques on another problem, i.e., predicting the
severity level of a new bug report based on previous recorded
bug reports [22]. Given a new bug report, their approach
returns a list of k historical bug reports that are most similar
to the given bug report, and then use the severity levels of
similar bug reports to predict the severity level of the new
bug report. They used an extension of a popular information
retrieval similarity measurement, i.e., BM25F, to compute the
similarity between two bug reports.

Hindle et al. applied latent Dirichlet allocation (LDA), a
statistical topic modeling technique, to commit logs to discover
what topics are being worked on by developers at any given
time, and to see how development trends are changing [7].
Barua et al. applied LDA to discover topics and trends present
in questions and answers on StackOverflow [3]. They found
that: the topics range widely from jobs to version control sys-
tems to C# syntax; questions in some topics lead to discussions
in other topics; and the topics gaining the most popularity
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over time are web development, mobile applications, Git, and
MySQL.

VIII. CONCLUSION AND FUTURE WORK

Twitter has become a popular means to share and dissem-
inate information. To date, there are hundreds of millions of
Twitter users generating billions of microblogs (aka tweets).
Software developers are also using Twitter, even for their
professional activities. Singer et al. found that software de-
velopers use Twitter to get awareness of people and trends,
extend their technical knowledge, and build connections with
other developers [16]. Unfortunately, developers often find it a
challenge to deal with the many irrelevant tweets (i.e., noises)
in their Twitter streams. Many developers follow many people
that generate many tweets (many of which are irrelevant) that
get broadcasted to them every day.

To make Twitter a better tool for developers in their
professional activities, we propose a new approach that can
help developers identify software related tweets from the mass
of other irrelevant tweets. Our approach, named NIRMAL,
trains a language model from a corpus of software related
contents on StackOverflow. The trained language model infers
the regularities of software related contents and use these
regularities to compute the likelihood of a tweet to be software
related. To improve the performance further, NIRMAL also
considers the repetitiveness of words in a tweet that can
be used to differentiate between informative and meaning-
less tweets. In our experiment, we have used NIRMAL to
rank a set of 6.2 million tweets generated by more than 90
thousands microbloggers. Most of the tweets are not software
related while only a minority of them are software related.
The experiment results show that NIRMAL can achieve an
accuracy@200 score of up to 0.695 which is greater than
the accuracy@200 score of a random model by up to 192%.
Furthermore, NIRMAL can be used to improve the accuracy
score of a keyword based approach by up to 31%.

As a future work, we plan to build N-grams with larger N
and evaluate how they perform w.r.t parameters of accuracy
and computational performance. We plan to investigate the
effect on performance of current models by adding more pre-
processing steps such as stemming and stop word removal.
We also plan to propose an approach that can summarize
the identified software related tweets to help developers better
manage the large number of tweets that they receive daily.
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