
Cataloging GitHub Repositories
Abhishek Sharma∗

School of Information Systems
Singapore Management University,

Singapore
abhisheksh.2014@smu.edu.sg

Ferdian �ung∗
School of Information Systems

Singapore Management University,
Singapore

ferdiant.2013@smu.edu.sg

Pavneet Singh Kochhar
School of Information Systems

Singapore Management University,
Singapore

kochharps.2012@smu.edu.sg

Agus Sulistya
School of Information Systems

Singapore Management University,
Singapore

aguss.2014@smu.edu.sg

David Lo
School of Information Systems

Singapore Management University,
Singapore

davidlo@smu.edu.sg

ABSTRACT
GitHub is one of the largest and most popular repository hosting
service today, having about 14 million users and more than 54
million repositories as of March 2017. �is makes it an excellent
platform to �nd projects that developers are interested in exploring.
GitHub showcases its most popular projects by cataloging them
manually into categories such as DevOps tools, web application
frameworks, and game engines. We propose that such cataloging
should not be limited only to popular projects. We explore the
possibility of developing such cataloging system by automatically
extracting functionality descriptive text segments from readme
�les of GitHub repositories. �ese descriptions are then input to
LDA-GA, a state-of-the-art topic modeling algorithm, to identify
categories. Our preliminary experiments demonstrate that addi-
tional meaningful categories which complement existing GitHub
categories can be inferred. Moreover, for inferred categories that
match GitHub categories, our approach can identify additional
projects belonging to them. Our experimental results establish a
promising direction in realizing automatic cataloging system for
GitHub.

KEYWORDS
GitHub, Latent Dirichlet Allocation, Genetic Algorithm

1 INTRODUCTION
GitHub is currently the largest repository hosting service, with
more than 54 million repositories hosted there by March 20171.

* �e �rst 2 authors have contributed equally to the work.
1h�ps://github.com/about

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
EASE’17, Karlskrona, Sweden
© 2017 ACM. 978-1-4503-4804-1/17/06. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3084226.3084287

A large number of open source projects, ranging from new to es-
tablished ones, put their code on GitHub. GitHub provides an
ecosystem for developers to work together to build so�ware. Devel-
opers can contribute to projects of interest, and build more complex
systems by reusing functionalities developed by others. To enable
developers to contribute to projects and reuse functionalities well,
they need to be aware of what is available on GitHub. Unfortu-
nately, discovering projects related to topics one is interested in
among the millions present in GitHub is not an easy task.

Recently, to aid information discovery, GitHub launched show-
cases2, which presents hundreds of popular repositories grouped
into categories. �e showcases serves as a catalog that can help
developers identify repositories of interest and navigate through
GitHub. Unfortunately, it contains only a small minority of projects
in GitHub. It was created manually and thus it is di�cult to increase
its size (either in the number of categories, or in the number of
projects per category) substantially without much e�ort. Another
feature introduced by GitHub to aid information discovery is top-
ics3 which allows GitHub users to add any word or tag which is
related to their project. However in its present form this feature
requires the tags to be added manually by project administrators.
Also the administrators do not get any topic or tag recommenda-
tions of any kind and can also add any word as tag. In this work, to
address the above challenges, we explore a topic modelling based
semi-automatic approach for cataloging a large number of GitHub
projects which can also be used to suggest topics for projects to
project administrators.

Our approach works by processing readme �les of GitHub projects.
It �rst employs a heuristic to automatically extract descriptive text
segments related to project functionality from the readme �les.
Irrelevant details from the readme �les (e.g., installation procedure,
copyright information, etc.) are dropped. Next, the text segments
are input into a topic modeling algorithm. At the end of the previ-
ous step, we have a set of topics (i.e., categories) and documents (i.e.,
projects) that belong to them. Additionally, for each topic we have
a set of words that characterize it. �ese words can be manually
analyzed to identify a suitable name for the topic.

As the topic modeling algorithm, we use LDA-GA which was
proposed by Panichella et al. and has been shown e�ective for

2h�ps://github.com/showcases
3h�ps://help.github.com/articles/classifying-your-repository-with-topics/

https://github.com/about
https://github.com/showcases
https://help.github.com/articles/classifying-your-repository-with-topics/

a number of so�ware engineering tasks [18]. LDA-GA combines
two algorithms: Latent Dirichlet Allocation (LDA) and Genetic
Algorithm (GA). LDA is a topic modeling algorithm which can be
viewed as a document clustering solution. In our case, readme �le
of each GitHub project is a document, and we want to cluster these
projects into categories. LDA however requires some parameters
which a�ect its e�ectiveness. Instead of manually experimenting
with di�erent values for parameters in LDA, LDA-GA tunes these
parameters by using Genetic Algorithm (GA) with Silhoue�e coef-
�cient as the evaluation function. One downside of LDA-GA, is the
need to run LDA many times which may take much time. To speed
up the computation time of LDA-GA, instead of using standard
batch LDA, we use an online LDA [7] that performs online learning
for generating LDA model. It was shown that online LDA learns a
topic model faster and the model is as good or be�er than the one
produced by traditional batch LDA.

In this preliminary study, we experiment with 10,000 fairly pop-
ular projects on GitHub as input to our approach to investigate its
potential to enhance the existing GitHub categories. We investigate
the following research questions:
RQ1 How accurate is our description text extraction method?
RQ2 Can our proposed approach identify new categories that

complement existing GitHub categories?
RQ3 Can our proposed approach identify new projects to exist-

ing GitHub categories?
�e contributions of our work are as follows

(1) We present a new research problem on automatically cata-
loging GitHub.

(2) We propose an approach to solve the problem. It uses a
similarity based approach to extract functionality descrip-
tive text segments from readme �les, and adapts LDA-GA
to improve its e�ciency.

(3) We demonstrate the potential of our approach to infer
additional categories and additional projects to existing
GitHub categories by an experiment on 10,000 GitHub
projects.

�e remainder of this paper is structured as follows. In Section 2,
we describe our proposed approach in more details. In Section 3,
we describe our experiment results. We list and describe related
work in Section 4. Finally, we conclude and mention future work
in Section 5.

2 APPROACH
�e overall framework of our approach is illustrated in Figure 1.
It takes as input a set of GitHub projects and output a set of cate-
gories in three main steps: data extraction, topic modelling, and
manual analysis. �e data extraction step recovers from the repos-
itories texts that describe functionalities realized by code stored
in them. �e topic modeling step processes these functionality
descriptive texts to generate a set of topics using LDA-GA proposed
by Panichella et al. [18]. Each topic generated by LDA-GA corre-
sponds to a ranked list of words characterizing the topics. LDA-GA
outputs also inform us which projects are associated to each of the
topics. �e manual analysis step converts these topics (i.e., ranked
lists of words) into categories. We describe these three steps in the
following subsections.

Data
Extraction

1

GitHub
 Repos

Run LDATopicsCategories

Functionality
Descriptive

Texts

Manual
Analysis

Topic Modelling
(LDA-GA)

Learn LDA
Parameters

3

2

Figure 1: Overall Framework

2.1 Data Extraction
In this step, we use a combination of popular text preprocessing
techniques and some heuristics to extract functionality descriptive
texts GitHub repositories. We extract such texts from readme �les
of the repositories.

We �rst split a readme �le into text segments. We observe many
readme �les contain headers and text in-between 2 headers o�en
forms a coherent text segment. Based on this observation, we split
each readme �le into text segments, by considering text in between
2 successive headers as one segment. �ese text segments are then
preprocessed and �ltered.

A�er we have the text segments, we perform standard text pre-
processing steps of tokenization, stop word removal and stemming
on each of the segments:

(1) Tokenization: A text segment is broken into tokens where
each token corresponds to a word that appears in the seg-
ment.

(2) Stop Word Removal: �e common English stop words, such
as “is”, “are”, etc, appear very o�en and thus may interfere
with the topic generation when LDA is run. �us, we
remove these words using a list of English stop words
provided at h�p://www.ranks.nl/stopwords.

(3) Stemming: A�er removing the stop-words, we reduce a
word to its root form (e.g., “writing” and “wri�en” are both
reduced to “write”) using a popular stemming algorithm,
i.e., Porter stemmer [19]

Next, we use a heuristic to identify a segment which describes
the functionality realized by the code in the repository. We want
to �lter out segments describing project installation, licensing, etc.
To do this, we make use of the 1-2 line short description that is
included in the homepage of a GitHub project – see Figure 2. �ese
1-2 line descriptions are too short to be processed by LDA (c.f., [8]),
however, they can be used to identify longer text segments in the
readme �les. In particular, we measure the similarity between the
short description and each text segment using Vector Space Model
(VSM), and use this similarity to identify a functionality descriptive
text segment.

Using VSM, each document (in our case the short description
and a text segment being evaluated) is represented as a vector of
weights. Each weight in the vector corresponds to a word in a
document and the value of weight is calculated using the standard
term frequency - inverse document frequency (TF-IDF) weighting
scheme [15]. Next, we measure similarity between the description

http://www.ranks.nl/stopwords

. 1-2 Line Description

2. Project Structure

3. README Section

Figure 2: A Sample Project Homepage on GitHub

and the text segment by computing the cosine similarity [15] of
their corresponding weight vectors. For each readme �le, we output
the text segment that is the most similar to the short description as
the descriptive text segment for the corresponding project.

2.2 Topic Modeling
For the topic modeling step, we use LDA-GA [18]. LDA-GA tunes
LDA parameters using GA; these parameters include: (1) numtopic ;
(2)numiter ; (3) α ; and (4) β . For ge�ing these parameters, we search
numtopic in the range of [2, 50], numiter in the range of [20, 500],
and both α and β in the range of (0, 0.1].

LDA-GA needs to run LDA many times as it searches for a good
parameter se�ing. �is is a time consuming process. To improve
its e�ciency, instead of using standard batch LDA, we use Online
LDA [7], which learns topic model using online learning. Ho�man
et al. have shown that online LDA speeds up the model learning
signi�cantly while still achieving a result as good as or be�er than
batch LDA [7].

�e topic modeling process proceeds as follows:

• First, given a project collection of n projects {p1, ...,pn },
in which each project is represented by its functionality
descriptive text segment, we group the projects into their
respective clusters. �e cluster membership is determined
by the project topic probability given by the LDA model
that is generated using the current parameters given by
GA. A project is assigned to the cluster that represents
the most probable topic of that project. �us, there are
numtopic clusters.

• Second, for each project pi , we calculate the distances be-
tween pi with other projects within the same cluster. We
then take the maximum of those distances and denote it
as a(pi). We also calculate the distances between pi and
the centroids of other clusters (i.e., the clusters where pi
is not a member). �e centroid of a cluster is an average
of all the projects in the cluster. We take the minimum of
those distances and denote it as b (pi).

• �ird, given a(pi) and b (pi), we calculate the Silhoue�e
coe�cient S (pi) for project pi as the �tness function for
GA, by following the formula below.

S (pi) = (b (pi) − a(pi)) ÷ (max (a(pi),b (pi)))

• Lastly, given the Silhoue�e coe�cients S (pi) for all projects
in {p1, ...,pn }, we calculate their mean and use this value as
the �tness score for GA. �e range of Silhoue�e coe�cient
is [-1, 1]. Higher value of the coe�cient indicates that a
be�er clustering is achieved.

We use gensim4 implementation of Online LDA and pyevolve5

implementation of GA. For GA, we set population size and genera-
tion to 100. For other parameters, we use default parameters given
by both tools.

2.3 Manual Analysis
�e output of the previous step is a set of topics along with a set
of projects that belong to each topic. Each topic is represented by
a ranked list of words that best represent it. Unfortunately, LDA
does not output a good name for each topic. Moreover, the topics
may not be ideal. Some topics may need to be merged, and some
other topics do not correspond to a coherent concept and may need
to be deleted.

�is manual analysis step requires a data analyst to perform
three actions:

• First, the data analyst needs to identify and delete incoher-
ent topics. �ese topics may arise due to the imperfection
of the data extraction or topic modeling step. �e data
extraction step may output a wrong text segment which
describes other information instead of the functionality
of the code implemented in a repository. GA may learn
a semi-optimal number of topics. LDA may learn a poor
topic.

• Next, the data analyst needs to infer a good representative
name for each topic. �e data analyst can get a hint of
a good name for a topic by looking into the top words
outpu�ed by LDA and the projects that are associated with
the topic.

• Finally, the data analyst needs to merge closely related
topics into higher level topics. Topics inferred by LDA can
be at di�erent levels of granularity, and a data analyst may
need to manually merge them.

3 PRELIMINARY EXPERIMENTS
3.1 Experimental Settings
In this preliminary experiments, we investigate the potential of
our proposed approach using 10,000 fairly popular GitHub projects.
In GitHub, developers can star a project and starring serves two
purposes: it acts as a bookmark for the developers to keep a track
of projects they are interested in, and also acts as a way to commu-
nicate appreciation of a project they like [1]. We used the GitHub
search API6 to identify the projects that have more than 20 stars,
which returned 244,419 such projects. We then took a random
sample of 10,000 projects. �is is a statistically signi�cant sample,
considering a con�dence level of 95% and a con�dence interval of
1%. A�er we have identi�ed the 10,000 projects, using GitHub API7,
we collected the metadata about these projects and also crawled
their GitHub home pages.

In the manual analysis step, the authors discussed together what
label would be best to explain the topic. �e authors did not consider
any particular dimensions such as language, platform, business

4h�ps://radimrehurek.com/gensim/
5h�p://pyevolve.sourceforge.net/
6h�ps://developer.github.com/v3/search/
7h�ps://developer.github.com/v3//

https://radimrehurek.com/gensim/
http://pyevolve.sourceforge.net/
https://developer.github.com/v3/search/
https://developer.github.com/v3//

domains, etc. �ey only considered top words produced by LDA-
GA, along with projects that belong to a topic for assigning its
label. LDA-GA returns 49 topics. A majority of the topics, 33 to be
exact, can be labeled properly. We also merge some of these topics
since they are coherent topics. We end up with a collection of 21
categories.

3.2 RQ1: How accurate is our description text
extraction method?

To evaluate the e�ectiveness of our extraction approach, we ran-
domly selected about 400 projects and extracted 2,570 text segments
from their readme �les. �ese text segments were then manually
labeled as descriptive or non-descriptive by 7 pairs of labellers. �e
labellers are PhD students or so�ware developers having a pro-
gramming experience of more than 5 years. Each pair is assigned
a set of text segments to label, and each person in a pair needs to
initially label the text segments independently. �e pairs agreed for
segments (2,324 out of 2,570 segment). For the disagreement cases,
each pair discusses them and decides the �nal ground truth label.
�e �nal distribution of the labels assigned is shown in Table 1.

Table 1: Agreements and Disagreements Among Labelers

Pair Agreed Disagreed
Pair-1 568 44
Pair-2 719 57
Pair-3 183 11
Pair-4 145 48
Pair-5 171 22
Pair-6 270 29
Pair-7 268 35
Total 2324 246

Based on the ground truth of labeled data created, we evalu-
ated our approach to select descriptive text segments using the
standard metrics of precision, recall, and F-measure. �ey are
calculated based on four possible outcome: a text segment was cor-
rectly identi�ed by our approach as descriptive (true positive, TP);
a non-descriptive text segment was wrongly identi�ed by our ap-
proach as descriptive (false positive, FP); a descriptive text segment
was wrongly identi�ed by our approach as non-descriptive (false
negative, FN); and a non-descriptive text segment was correctly
identi�ed by our approach as descriptive (true negative, TN). �e
formulas used to compute precision, recall, and F-measure are:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F −measure =
2 × Precision × Recall

Precision + Recall
(3)

Tables 2 presents the confusion matrix, comparing the descrip-
tive paragraphs identi�ed by our approach vis-a-vis the ground
truth created by manual labeling. Table 3 shows the precision, re-
call, and F-measure scores achieved by our extraction method.An
F-measure of 0.7 or higher is o�en considered reasonably good in
the literature [9, 11].

Table 2: Confusion Matrix

Predicted
Descriptive

Predicted Non-
Descriptive

Actual Descriptive 271 112
Actual Non-
Descriptive

114 2073

Total 385 2185

Table 3: Precision, Recall, and F-measure of Our Approach.

Precision Recall F-measure
Performance 0.7075 0.7038 0.7057

Table 5: Sample projects belonging toRaspberry PICategory

No URL
1 h�ps://github.com/Asquera/raspberry-devbox
2 h�ps://github.com/steve71/RasPiBrew
3 h�ps://github.com/DamianEdwards/PiDnx
4 h�ps://github.com/lanceseidman/PiCAST
5 h�ps://github.com/PandoCloud/pando-embedded-framework

Table 6: Sample projects belonging to Monitoring Category

No URL
1 h�ps://github.com/scouter-project/scouter
2 h�ps://github.com/tofuma�/Find�eProblems
3 h�ps://github.com/laravel-noti�cation-channels/pusher-

push-noti�cations
4 h�ps://github.com/kfdm/irssi-growl
5 h�ps://github.com/fnando/noti�er

3.3 RQ2: Can our proposed approach identify
new categories that complement existing
GitHub categories?

We list the categories that are identi�ed in Table 4. �e identi�ed
categories can be further divided into three kinds: new categories
(marked by N), categories with minor overlap (marked by M), and
categories with substantial overlap (marked with S). Six categories
are new ones, �ve are those with minor overlap, while ten are
substantially similar to categories appearing in GitHub showcases.

One of the new category is Raspberry PI, which is a credit-card
sized single-board computer developed by Raspberry foundation.
Many GitHub projects develop solutions running on Raspberry PI,
which is ge�ing more popularity and adoption. Table 5 highlights
some of them. Another category is monitoring; this category cap-
tures projects that monitor the health of a so�ware system and
notify developers for issues. Some examples of projects belonging
to these categories are shown in Table 6.

A number of categories minimally overlap with GitHub cate-
gories. For example, GitHub has Fabric mobile developer tools as
a category. Projects in this category uses Fabric.io to build their
mobile apps. Our category captures general Android apps not re-
stricted to those developed using Fabric.io. As another example,

Table 4: Discovered Topics

Topic Name (Top LDA Words) Topic Name (Top LDA Words)
NRaspberry PI (pi tool raspberri devic detect) NMonitoring (notif server monitor program)
NCloud Computing (amazon upload solut s3 aw) N Blogging (menu blog code item engin)
N Servers and Networking (h�p server request proxi asynchron) NMiddleware (rabbitmq servic oracl web project)
MAndroid Development (app android io librari support) MRuby Related (gem log rubi rail support)
MReact Framework (react icon redux action compon) MLua (studio code lua visual support)
MTesting Frameworks (test pull unit fork request)
SMusic (music applic project play bu�on) SWeb Frontend (css control contain view will)
SData Management and Analysis (data dataset analysi) SRendering and Viewers (output color build render imag font)
SBuild and Productivity Tools (vagrant vertx sbt maven) SOperating Systems (window os develop linux applic)
SGaming and Chat Engines (game materi bot irc chat) SWeb Frameworks (twi�er grid �eld bootstrap form)
SText Editors (text progress sublim view bar) S Security (user databas con�gur server)

GitHub has a category Programming Languages and in it several
programming languages developed in GitHub are listed (e.g., the
main repository for Ruby8. Our categories include Ruby and Lua
and they capture not only the main repositories developing these
languages, but also additional repositories.

A number of categories substantially match those speci�ed by
GitHub showcases. For example, GitHub has repositories Music,
Web Application Frameworks, and Open Source Operating Systems
which substantially match Music, Web Frameworks, and Operating
Systems which appear in Table 4.

3.4 RQ3: Can our approach identify additional
projects to existing categories?

We check if our approach can identify additional projects belonging
to the above-mentioned �ve categories, and �nd that we indeed
can �nd additional projects. �e list of additional projects for each
of the �ve categories are shown in Table 7.

3.5 �reats to Validity
�reats to internal validity are related to potential errors and biases
that may have occurred when performing the experiments. We
tried to minimize these threats by using third party tools for doing
LDA and GA rather than implementing them ourselves. Usage of
well-known third-party tools minimizes the probability of error.
We have also checked our own code for cluster membership and
calculating �tness score. We need to admit that the manual analysis
step is subjective. We have tried to reduce this subjectivity by
involving three people in the process. �reats to external validity
are related to the generalizability of our result. We have performed
a preliminary experiment with 10,000 GitHub projects, which is a
statistically signi�cant sample for GitHub projects with 20 stars or
more. We plan to reduce this threat further by investigating more
projects in the future.

4 RELATEDWORK
LDA [3] has been used in a variety of SE domains for topic identi�-
cation. Hindle et al. use LDA on commit log messages to understand
what work has been done by developers and topics of development
over time [6]. Neuhaus and Zimmermann use description texts
from vulnerability reports in the Common Vulnerability and Ex-
posures (CVE) database and apply LDA to �nd vulnerability types
8h�ps://github.com/ruby/ruby

Table 7: Sample Additional Projects Discovered

Category: Music
h�ps://github.com/Smart�ingsUle/DLNA-PLAYER
h�ps://github.com/benkaiser/stre�o
h�ps://github.com/revolunet/VLCcontrols
h�ps://github.com/eddturtle/TurtlePlayer
h�ps://github.com/yoichitgy/EECircularMusicPlayerControl
Category: Web Frameworks
h�ps://github.com/nephila/djangocms-blog
h�ps://github.com/chaijs/chai
h�ps://github.com/grommet/grommet
h�ps://github.com/erik5388/jquery.gracket.js
h�ps://github.com/Cmdv/React-RxJS
Category: Operating Systems
h�ps://github.com/SharpCoder/rpi-kernel
h�ps://github.com/pguyot/Einstein
h�ps://github.com/krinkinmu/aufs
h�ps://github.com/tornewu�/pycorn
h�ps://github.com/mbaltaks/doublecommand
Category: Text Editors
h�ps://github.com/jclement/SublimePandoc
h�ps://github.com/dhategan/brackets-grunt
h�ps://github.com/mgussekloo/Tabright
h�ps://github.com/kimpe�ersen/random-sublime-text-plugin
h�ps://github.com/chuyik/brackets-snippets
Category: Security
h�ps://github.com/xyproto/permissions2
h�ps://github.com/peredurabefrog/phpSecureLogin
h�ps://github.com/benbahrenburg/Securely
h�ps://github.com/robregonm/yii2-auth
h�ps://github.com/ahoward/middleman-gibberish

and new trends [17]. �omas et al. use LDA to �nd out topics to
understand evolution of a so�ware system and perform a quali-
tative analysis on 12 releases of JHotDraw and compute several
metrics [22]. Panichella et al. developed a genetic algorithm based
approach to identify best se�ings for running LDA on so�ware
engineering domain [18].

Automatic categorization of so�ware applications has also been
explored in [14, 16] which assign projects into prede�ned categories
based Application Programming Interface (API) calls made by the

https://github.com/ruby/ruby

projects. In [10, 24] LDA has been used on the identi�er names
and comments in the project code for categorization. Our work,
is di�erent from above works as we do not assume some prede-
�ned categories and also use a high level and descriptive source
of information (i.e., readme �les). We also design a solution to
deal with noise in readme �les. Also instead of using normal LDA
we used LDA-GA proposed by Panichella et al. (a combination
Latent Dirichlet Allocation (LDA) and Genetic Algorithm (GA)) and
evaluate it on a large number of projects. Our algorithm shows
promise in �nding new categories that can complement categories
in GitHub showcases and can also be used to �nd additional projects
belonging to the existing categories.

LDA has been also used to analyze and identify pa�erns in the
way so�ware developers use social channels. Barua et al. use LDA
on a dataset of questions and answers from Stack Over�ow to �nd
topics among developer discussions and trends of these topics over
time [2]. Vasques et al. had used LDA on Stack Over�ow posts to
get an insight into mobile development issues [13]. LDA was used
to identify popular so�ware engineering categories on Twi�er [21].
Recently Yang et al. applied LDA to study what kind of security
questions do developers ask in Stack Over�ow [26].

GitHub has been one of the popular so�ware repository being ex-
plored in so�ware engineering research. Casalnuovo et al. analyze
C and C++ projects from GitHub to understand the usage of asserts
and their impact on defect occurrence in these projects [4]. Gousios
et al. analyze 291 projects from GitHub which are wri�en in vari-
ous di�erent programming languages to understand the pull-based
so�ware development model [5]. �ere also have been studies in-
vestigating relationship between programming languages and code
quality based on GitHub projects [12, 20]. �ung et al. [23] had
analyzed the network structure of GitHub developers to understand
characteristics of in�uential projects and developers. Vasilescu et
al. collect thousands of projects from GitHub to understand the
rate and breadth of developers’ context-switching behavior and the
e�ect of context-switching on productivity [25]. Di�erent that the
above studies, the goal of our work is to catalog Github repositories
by expanding GitHub showcases.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a technique to semi-automatically catalog
GitHub projects. Our intention is to extend and complement GitHub
showcases. We �rst develop an approach to �nd functionality de-
scriptive text segments from readme �les of GitHub projects. Next,
we process these segments using LDA-GA to learn a set of topics,
along with projects belonging to these topics. �ese topics are then
manually analyzed to produce a set of categories. Our preliminary
study on 10,000 GitHub projects demonstrate that: (1) Our approach
can retrieve functionality descriptive texts from read me �les with
an F-measure of 0.7; (2) Our approach can identify new categories
that are not captured by GitHub showcases; (3) Our approach can
also identify new projects for existing GitHub categories.

For future work, we plan to experiment with a larger set of
GitHub projects. Larger data can help us to uncover new topics
that might not have been captured in our current analysis. We
also plan to improve the accuracy of various steps of our proposed
approach, and make it more automated. We also plan to evaluate

our approach directly with so�ware community on GitHub, by
suggesting category labels to some projects and ge�ing feedback
on the same. We will also try to get ground truth topics for some
projects which can then be used to measure the accuracy of our
model using metrics such as precision and recall.

REFERENCES
[1] GitHub documentation. h�ps://help.github.com/articles/about-stars/ [Online;

accessed 19-Oct-2016].
[2] Anton Barua, Stephen W. �omas, and Ahmed E. Hassan. 2014. What Are

Developers Talking About? An Analysis of Topics and Trends in Stack Over�ow.
Empirical So�ware Engineering 19, 3 (2014), 619–654.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet alloca-
tion. the Journal of machine Learning research 3 (2003), 993–1022.

[4] Casey Casalnuovo, Prem Devanbu, Abilio Oliveira, Vladimir Filkov, and
Baishakhi Ray. 2015. Assert Use in GitHub Projects. In ICSE. 755–766.

[5] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory
Study of the Pull-based So�ware Development Model. In ICSE. 345–355.

[6] Abram Hindle, Michael W. Godfrey, and Richard C. Holt. 2009. What’s hot and
what’s not: Windowed developer topic analysis. In ICSM. 339–348.

[7] Ma�hew Ho�man, Francis R Bach, and David M Blei. 2010. Online learning for
latent dirichlet allocation. In Advances in Neural Information Processing Systems.
856–864.

[8] Liangjie Hong and Brian D. Davison. 2010. Empirical Study of Topic Modeling
in Twi�er. In SOMA.

[9] Neil Ireson, Fabio Ciravegna, Mary Elaine Cali�, Dayne Freitag, Nicholas Kush-
merick, and Alberto Lavelli. 2005. Evaluating machine learning for information
extraction. In ICML. ACM, 345–352.

[10] Shinji Kawaguchi, Pankaj K Garg, Makoto Matsushita, and Katsuro Inoue. 2006.
Mudablue: An automatic categorization system for open source repositories.
Journal of Systems and So�ware 79, 7 (2006), 939–953.

[11] Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and Jan Jürjens. 2011.
Supporting requirements engineers in recognising security issues. In Require-
ments Engineering: Foundation for So�ware �ality. Springer, 4–18.

[12] P. S. Kochhar, D. Wijedasa, and D. Lo. 2016. A Large Scale Study of Multiple
Programming Languages and Code �ality. In SANER, Vol. 1. 563–573.

[13] Mario Linares-Vásquez, Bogdan Dit, and Denys Poshyvanyk. 2013. An ex-
ploratory analysis of mobile development issues using stack over�ow. In WCRE.
IEEE Press, 93–96.

[14] Mario Linares-Vásquez, Collin McMillan, Denys Poshyvanyk, and Mark
Grechanik. 2014. On using machine learning to automatically classify so�-
ware applications into domain categories. Empirical So�ware Engineering 19, 3
(2014), 582–618.

[15] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. 2008. Intro-
duction to Information Retrieval. Cambridge University Press.

[16] Collin McMillan, Mario Linares-Vasquez, Denys Poshyvanyk, and Mark
Grechanik. 2011. Categorizing so�ware applications for maintenance. In So�ware
Maintenance (ICSM), 2011 27th IEEE International Conference on. IEEE, 343–352.

[17] Stephan Neuhaus and �omas Zimmermann. 2010. Security Trend Analysis with
CVE Topic Models. In ISSRE. 111–120.

[18] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys
Poshyvanyk, and Andrea De Lucia. 2013. How to e�ectively use topic models
for so�ware engineering tasks? an approach based on genetic algorithms. In
ICSE. IEEE Press, 522–531.

[19] Martin F Porter. 1980. An algorithm for su�x stripping. Program 14, 3 (1980),
130–137.

[20] Baishakhi Ray, Daryl Posne�, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
FSE. ACM, 155–165.

[21] Abhishek Sharma, Yuan Tian, and David Lo. 2015. What’s hot in so�ware
engineering Twi�er space?. In ICSME, 2015. IEEE, 541–545.

[22] Stephen W. �omas, Bram Adams, Ahmed E. Hassan, and Dorothea Blostein.
2010. Validating the Use of Topic Models for So�ware Evolution. In SCAM.
55–64.

[23] Ferdian �ung, Tegawende F Bissyande, David Lo, and Lingxiao Jiang. 2013.
Network structure of social coding in github. In CSMR), 2013. IEEE, 323–326.

[24] Kai Tian, Meghan Revelle, and Denys Poshyvanyk. 2009. Using latent dirichlet al-
location for automatic categorization of so�ware. In Mining So�ware Repositories,
2009. MSR’09. 6th IEEE International Working Conference on. IEEE, 163–166.

[25] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo, Daniela Damian,
Premkumar Devanbu, and Vladimir Filkov. �e Sky is Not the Limit: Multitasking
Across GitHub Projects.

[26] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. 2016. What
Security �estions Do Developers Ask? A Large-Scale Study of Stack Over�ow
Posts. Journal of Computer Science and Technology 31, 5 (2016), 910–924.

https://help.github.com/articles/about-stars/

	Abstract
	1 Introduction
	2 Approach
	2.1 Data Extraction
	2.2 Topic Modeling
	2.3 Manual Analysis

	3 Preliminary Experiments
	3.1 Experimental Settings
	3.2 RQ1: How accurate is our description text extraction method?
	3.3 RQ2: Can our proposed approach identify new categories that complement existing GitHub categories?
	3.4 RQ3: Can our approach identify additional projects to existing categories?
	3.5 Threats to Validity

	4 Related Work
	5 Conclusion and Future Work
	References

